Exploiting Spatial Abstraction in Predictive Analytics of Vehicle Traffic

نویسندگان

  • Natalia V. Andrienko
  • Gennady L. Andrienko
  • Salvatore Rinzivillo
چکیده

By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the traffic intensities and speeds in an abstracted network are interrelated in the same way as they are in a detailed street network at the level of street segments. We developed interactive visual interfaces that support representing these interdependencies by mathematical models. To test the possibility of utilizing them for performing traffic simulations on the basis of abstracted transportation networks, we devised a prototypical simulation algorithm employing these dependency models. The algorithm is embedded in an interactive visual environment for defining traffic scenarios, running simulations, and exploring their results. Our research demonstrates a principal possibility of performing traffic simulations on the basis of spatially abstracted transportation networks using dependency models derived from real traffic data. This OPEN ACCESS ISPRS Int. J. Geo-Inf. 2015, 4 592 possibility needs to be comprehensively investigated and tested in collaboration with transportation domain specialists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic congestion control using Smartphone sensors based on IoT Technology

Traffic congestion in road networks is one of the main issues to be addressed, also vehicle traffic congestion and monitoring has become one of the critical issues in road transport. With the help of Intelligent Transportation System (ITS), current information of traffic can be used by control room to improve the traffic efficiency. The suggested system utilize technologies for real-time collect...

متن کامل

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

Using Web Mining to Support Low Cost Historical Vehicle Traffic Analytics

Analyzing historical vehicle traffic data has many applications including urban planning and intelligent in-vehicle route prediction. A common practice to acquire this data is through roadside sensors. This approach is expensive because of infrastructure and planning costs and cannot be easily applied to new routes. In this paper, a low-cost Web mining approach is proposed to address these limi...

متن کامل

A Qualitative Model for Natural Language Communication about Vehicle Traffic

In this paper we describe a qualitative approach for natural language communication about vehicle traffic. It is an intuitive and simple model that can be used as the basis for defining more detailed position descriptions and transitions. It can also function as a framework for relating different aggregation levels. We apply a diagrammatic abstraction of traffic that mirrors the different possi...

متن کامل

Model Predictive Control System Design using ARMAX Identification Method for Car-following Behavior

The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015